p-SATURATED FORMATIONS

BY ELAYNE A. IDOWU

ABSTRACT

We consider here a nonempty formation \mathfrak{F} locally defined by a system $\{\mathfrak{F}(t)\}$ where for some fixed prime number p, $\mathfrak{F}(p) = \mathfrak{F}$. We call such formations p-locally defined. It is shown that every p-locally defined formation \mathfrak{F} has the property that $G/\Phi_p(G) \in \mathfrak{F}$ implies that $G \in \mathfrak{F}$ where $\Phi_p(G)$ is the p-Frattini subgroup of G. If \mathfrak{F} is a formation of solvable groups, then this property is equivalent to \mathfrak{F} having a p-local definition. For solvable groups equivalent conditions are stated in terms of the \mathfrak{F} -projectors, the \mathfrak{F} -normalizers, and the \mathfrak{F} -hypercenter.

Since W. Gaschutz defined them in [4], there has been considerable discussion about saturated formations and locally defined formations. We consider here a nonempty formation \mathfrak{F} locally defined by a system $\{\mathfrak{F}(t)\}$ where, for some fixed prime number p, $\mathfrak{F}(p) = \mathfrak{F}$. In other words, the defining formation corresponding to the prime number p will be restricted as little as possible. As it turns out, such formations have an interesting relation to the p-Frattini subgroup as defined by W. E. Deskins [2]. If we restrict our attention to formations of solvable groups locally defined by an integrated system $\{\mathfrak{F}(t)\}$ with $\mathfrak{F}(p) = \mathfrak{F}$, then it is obvious that a solvable group G can have no \mathfrak{F} -crucial p-chief factors. This fact leads to equivalent conditions on the \mathfrak{F} -projectors, the \mathfrak{F} -normalizers and the \mathfrak{F} -hypercenter.

Only finite groups will be considered. The terminology and notation are standard and may be found in Huppert [5] and Carter and Hawkes [1].

1. p-Locally defined formations

DEFINITION 1.1. Let G be a finite group and p a fixed prime number. Let $\Phi_p(G)$ denote the intersection of G with all maximal subgroups M of G such that $p \not \mid [G:M]$. $\Phi_p(G)$ is called the p-Frattini subgroup of G.

It follows directly from 1.1 that $\Phi_p(G)$ is a characteristic subgroup of G which contains the Frattini subgroup $\Phi(G)$ and that $\Phi_p(G) = G$ if and only if G = 1 or G is a p-group. The following lemma is easily verified.

LEMMA 1.2. Let G be a finite group and $x \in G$. Then $x \in \Phi_p(G)$ if and only if when $G = \langle R, x \rangle$ and $p \nmid [G: \langle R \rangle]$, then $G = \langle R \rangle$.

It is clear from 1.1 that P^* , the p-Sylow subgroup of $\Phi_p(G)$, is equal to $O_p(G)$ the largest normal p-subgroup of G. In [3, theorem 2] Deskins has shown that $\Phi_p(G)/P^* = \Phi_p(G/P^*) \neq \Phi(G/P^*)$. Consequently, $\Phi_p(G) = P^*N$ where N is a nilpotent group of p' order. Using this fact and 1.2 we prove the following lemmas.

LEMMA 1.3. $\Phi_p(G) = P^*N$ is nilpotent if and only if $N \leq \Phi(G)$.

PROOF. If $\Phi_p(G)$ is nilpotent, $N \triangleleft G$. If $N \not \leq \Phi(G)$, then G = NM for some maximal subgroup M of G. But then $p \not \mid [G:M]$ contradicting the fact that $N \leq \Phi_p(G)$. Conversely, $N \leq \Phi(G)$ implies that $\Phi_p(G) = P^*N \leq P^*\Phi(G) \leq F(G)$, the Fitting subgroup of G, and $\Phi_p(G)$ is nilpotent.

LEMMA 1.4. $\Phi_p(G) = P^*N = \Phi(G)$ if and only if $P^* \leq \Phi(G)$.

PROOF. $P^* \leq \Phi(G)$ implies that $\Phi_p(G)/\Phi(G)$ is nilpotent and therefore that $\Phi_p(G)$ is nilpotent. By 1.3, $N \leq \Phi(G)$ and $\Phi_p(G) = \Phi(G)$. The converse is obviously true.

LEMMA 1.5. Let q be a prime number different from p. Then $q ||G/\Phi_p(G)|$ if and only if q ||G|.

PROOF. Suppose that $q \mid |G|$. If $q \nmid |\Phi_p(G)|$, then clearly $q \mid |G/\Phi_p(G)|$. If $q \mid |\Phi_p(G)|$, let P^* be the p-Sylow subgroup of $\Phi_p(G)$ and set $\bar{G} = G/P^*$. Then $q \mid |\Phi_p(\bar{G})| = |\Phi(\bar{G})|$. By [5, Satz 3.8 p. 270], $q \mid |\bar{G}/\Phi(\bar{G})| = |G/\Phi_p(G)|$.

That the condition $q \neq p$ is a necessary one in 1.5 is illustrated by S_3 , the symmetric group on three symbols. $\Phi_3(S_3) \simeq C_3$ and $3 \mid |S_3|$, but $3 \nmid |S_3| / \Phi_3(S_3)|$.

A formation \mathfrak{F} is said to be saturated if $G/\Phi(G) \in \mathfrak{F}$ implies that $G \in \mathfrak{F}$. Since $\Phi(G) \leq \Phi_p(G)$, it is natural to ask what can be said about a formation \mathfrak{F} such that $G/\Phi_{p(G)} \in \mathfrak{F}$ implies that $G \in \mathfrak{F}$.

DEFINITION 1.6. A formation \mathfrak{F} is called *p*-saturated if $G/\Phi_p(G) \in \mathfrak{F}$ implies that $G \in \mathfrak{F}$.

Of course, if \mathfrak{F} is *p*-saturated, it must be a saturated formation containing all *p*-groups such that $\mathfrak{PF} = \mathfrak{F}$ where \mathfrak{P} is the formation of *p*-groups.

The class of p-closed groups is an example of a p-saturated formation. Poljakov [6, corollary 4] has shown that the formation of q-nilpotent groups is also p-saturated if $q \neq p$. The class of nilpotent groups is a saturated formation which is not p-saturated for any prime number p.

DEFINITION 1.7. A formation \mathfrak{F} is said to be p-locally defined if it is locally defined by a system $\{\mathfrak{F}(t)\}$ where $\mathfrak{F}(p) = \mathfrak{F}$.

Let \mathfrak{F} be the formation of p-closed groups. Then \mathfrak{F} may be p-locally defined by $\{\mathfrak{F}(t)\}$ where $\mathfrak{F}(t)$ is the formation of p'-groups for $t \neq p$ and $\mathfrak{F}(p) = \mathfrak{F}$. If q is a prime number different from p, the class of q-nilpotent groups and the class of q-solvable groups with q-length $l_q \leq 1$ can also be p-locally defined.

The following result shows that p-locally defined formations bear the same relation to p-saturated formations as locally defined formations bear to saturated formations.

THEOREM 1.8. Every p-locally defined formation is p-saturated.

PROOF. Suppose not and let $\mathfrak{F} = \{\mathfrak{F}(t)\}$ be a p-locally defined formation. Let G be a group of minimal order such that $G/\Phi_p(G) \in \mathfrak{F}$ and $G \not\in \mathfrak{F}$. Then $\Phi_p(G) \neq \Phi(G)$ and $O_p(G) \neq 1$. Let K be a minimal normal subgroup of G contained in $O_p(G)$ and set $\overline{G} = G/K$. Then $\overline{G}/\Phi_p(\overline{G}) \simeq G/\Phi_p(G) \in \mathfrak{F}$ and $G/K \in \mathfrak{F}$. Since $K \leq C_G(K)$, $G/C_G(K) \in \mathfrak{F} = \mathfrak{F}(p)$ and $G \in \mathfrak{F}$. This contradiction establishes that \mathfrak{F} is p-saturated.

It should be noted that if π , the support of \mathfrak{F} , is not the set of all prime numbers, one must verify that if $G/\Phi_p(G)$ is a π -group then G is also a π -group. But this is ensured by 1.5.

2. p-Saturated formations of solvable groups

A saturated formation \mathfrak{F} consisting of only solvable groups can be locally defined by an integrated system $\{\mathfrak{F}(t)\}$, i.e., $\mathfrak{F}(t) \leq \mathfrak{F}$ for every prime number t. If the group G is solvable every maximal subgroup will have prime power index in G and G will have an \mathfrak{F} -projector (\mathfrak{F} -covering subgroup), an \mathfrak{F} -normalizer and an \mathfrak{F} -hypercenter. We want to relate these concepts to those of p-saturation and p-local definition.

Let \mathfrak{F} be a p-locally defined formation of solvable groups with support π . Then $p \in \pi$ and even if π does not consist of all prime numbers, we may use the results of Carter and Hawkes [1] by adopting the definition of \mathfrak{F} -normalizer given by Seitz and Wright [7] and making other minor adjustments.

DEFINITION 2.1. Let t be a prime number and M a maximal subgroup of G such that $[G:M]=t^{\alpha}$. M is called a t-maximal subgroup of G. M is called \mathfrak{F} -normal if $t \in \pi$ and $M/\operatorname{core}_G M \in \mathfrak{F}(t)$. Otherwise M is called \mathfrak{F} -abnormal. If M is \mathfrak{F} -abnormal, M is said to be \mathfrak{F} -critical if $t \not\in \pi$ or if G = F(G)M. An \mathfrak{F} -abnormal maximal subgroup M is said to be \mathfrak{F} -crucial if $t \not\in \pi$ or if $M/\operatorname{core}_G M \in \mathfrak{F}$.

As in [1], $G \in \mathcal{F}$ if and only if G has no \mathcal{F} -abnormal maximal subgroups. Similarly, $G \in \mathcal{F}$ if and only if G has no \mathcal{F} -critical maximal subgroups and if and only if G has no \mathcal{F} -crucial maximal subgroups.

We will make use of the following results from [1].

LEMMA 2.2 [1, lemma 4.6]. If M is an \mathcal{F} -critical maximal subgroup of G then each \mathcal{F} -normalizer of M is an \mathcal{F} -normalizer of G.

LEMMA 2.3 [1, theorem 4.7]. Each \mathfrak{F} -normalizer D of G can be joined to G by a chain of the form

$$D = G_r \leqq G_{r-1} \leqq \cdots \leqq G_1 \leqq G_0 = G$$

where G_i is an \mathcal{F} -critical maximal subgroup of G_{i-1} , $1 \le i \le r$.

LEMMA 2.4 [1, theorem 5.4]. Each \mathfrak{F} -projector F of G can be joined to G by a chain of the form

$$F = G_n \leq G_{n-1} \leq \cdots \leq G_1 \leq G_0 = G$$

where G_i is an \mathfrak{F} -crucial maximal subgroup of G_{i-1} , $i = 1, \dots, n$.

THEOREM 2.5. Let \mathfrak{F} be a saturated formation of solvable groups. Then the following statements are equivalent:

- (a) \mathfrak{F} is p-saturated.
- (b) \mathscr{F} can be p-locally defined by an integrated system $\{\mathscr{F}(t)\}$ with $\mathscr{F}(p) = \mathscr{F}$.
- (c) Every solvable group G has an \mathfrak{F} -projector F such that $p \nmid [G:F]$.
- (d) Every solvable group G has an \mathfrak{F} -normalizer D such that $p \nmid [G:D]$.
- (e) For every solvable group G, $O_p(G) \leq Z_{\Re}(G)$.

PROOF. 1. (a) implies (b). \mathfrak{F} is saturated so there is an integrated system $\{\mathfrak{F}(t)\}$ of formations which locally define \mathfrak{F} . Let \mathfrak{F}^* be the saturated formation locally defined by $\{\mathfrak{F}^*(t)\}$ where $\mathfrak{F}^*(t) = \mathfrak{F}(t)$ if $t \neq p$ and $\mathfrak{F}^*(p) = \mathfrak{F}$. It is clear that $\mathfrak{F} \leq \mathfrak{F}^*$ and the two formations have the same support. Suppose that $\mathfrak{F} \neq \mathfrak{F}^*$. Let G be a solvable group of minimal order such that $G \in \mathfrak{F}^*$ but $G \not\in \mathfrak{F}$ and let N be minimal normal subgroup of G. Then $G/N \in \mathfrak{F}$ and N must be the unique

minimal normal subgroup of G. $G \notin \mathfrak{F}$ implies that $G/\Phi_p(G) \notin \mathfrak{F}$, so $\Phi_p(G) = 1$ and G has no normal p-subgroups. Hence |N| = q' for some prime number $q \neq p$. $G \in \mathfrak{F}^*$, so every t-chief factor of G is \mathfrak{F} -central if $t \neq p$. Let H/K be a p-chief factor of G. Then H/K must lie above N and is thus G-isomorphic to a p-chief factor of G/N. Since $G/N \in \mathfrak{F}$, H/K is \mathfrak{F} -central in G and $G \in \mathfrak{F}$. But this is not possible, so $\mathfrak{F} = \mathfrak{F}^*$.

2. (b) implies (c). It is clear from Definition 2.1 that a solvable group has no \Re -crucial p-maximal subgroups. If F is an \Re -projector of G, let

$$F = G_n < G_{n-1} < \cdots < G_1 < G_0 = G$$

be an \mathscr{F} -crucial chain. Since $p \not \mid [G_{i-1}:G_i]$ for $i=1,2,\cdots,n, p \not \mid [G:F]$.

3. (c) implies (d). We show first that if D is an \mathfrak{F} -normalizer of G, then $O_p(G) \leq D$. Suppose not and let G be a minimal counter-example. Then $G \not\in \mathfrak{F}$ and $O_p(G) \neq 1$. Let K be a minimal normal subgroup of G contained in $O_p(G)$. If $K \leq M$ where M is an \mathfrak{F} -critical maximal subgroup of G, $K \leq O_p(M) \leq D$. Then $O_p(G)/K = O_p(G/K) \leq D/K$ and $O_p(G) \leq D$. Hence K is not contained in any \mathfrak{F} -critical maximal subgroup of G. So for any \mathfrak{F} -critical maximal subgroup M of G we have G = KM and $M \simeq G/K \in \mathfrak{F}$. But this implies that M is an \mathfrak{F} -projector of G, contradicting the fact that $p \mid [G:M]$. This contradiction establishes that $O_p(G) \leq D$.

Now let H/K be a p-chief factor of G. $H/K \le O_p(G/K) \le DK/K$ so that H/K, since it is covered by D, is \mathscr{F} -central in G. Since every p-chief factor of G is \mathscr{F} -central, $p \not\vdash [G:D]$.

- 4. (d) implies (e). Since each \Re -normalizer of G contains a p-Sylow subgroup of G, $O_p(G) \leq Z_{\Im}(G)$, the intersection of the \Re -normalizers.
- 5. (e) implies (a). Let $G/\Phi_p(G) \in \mathfrak{F}$. If $\Phi_p(G) = \Phi(G)$, $G \in \mathfrak{F}$ since \mathfrak{F} is saturated. If $\Phi_p(G) \neq \Phi(G)$, 1.4 implies that $O_p(G) \neq 1$. Let $\bar{G} = G/O_p(G)$. Then $\bar{G}/\Phi(\bar{G}) \simeq G/\Phi_p(G) \in \mathfrak{F}$, so $\bar{G} = G/O_p(G) \in \mathfrak{F}$. Since $O_p(G) \leq Z_{\mathfrak{F}}(G)$, $G \in \mathfrak{F}$ and \mathfrak{F} is p-saturated.

REFERENCES

- 1. R. W. Carter and T. O. Hawkes, The 3-normalizers of a finite soluble group, J. Algebra 5 (1967), 175-202.
- 2. W. E. Deskins, On maximal subgroups, Proceedings of Symposia in Pure Mathematics, Vol. 1, Finite Groups, Amer. Math. Soc., 1959, pp. 100-104.
- 3. W. E. Deskins, A condition for the solvability of a finite group, Illinois J. Math. 5 (1961), 306-313.
 - 4. W. Gaschutz, Zur Theorie der endlichen auflosbaren Gruppen, Math. Z. 80 (1963), 300-305.

- 5. B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967.
- 6. L. Ja. Poljakov, On the generalized Frattini subgroup of a finite group, Sibirsk. Mat. Ž. 7 (1966), 227-230 (Russian).
- 7. G. M. Seitz and C. R. B. Wright, On complements of 3-residuals in finite solvable groups, Arch. Math. 21 (1970), 139-150.

DEPARTMENT OF MATHEMATICS AND STATISTICS UNIVERSITY OF PITTSBURGH PITTSBURGH, PA. 15260 USA